Programmable on-chip nonlinear photonics | Nature

Programmable on-chip nonlinear photonics | Nature

  • Boyd, R. W. Nonlinear Optics (Academic, 2008).

  • Grelu, P. & Akhmediev, N. Dissipative solitons for mode-locked lasers. Nat. Photonics 6, 84–92 (2012).

    Article
    CAS

    Google Scholar

  • Diddams, S. A., Vahala, K. & Udem, T. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science 369, eaay3676 (2020).

    Article
    CAS
    PubMed

    Google Scholar

  • Gaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nat. Photonics 13, 158–169 (2019).

    Article
    CAS

    Google Scholar

  • Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135 (2006).

    Article
    CAS

    Google Scholar

  • Dutt, A., Mohanty, A., Gaeta, A. L. & Lipson, M. Nonlinear and quantum photonics using integrated optical materials. Nat. Rev. Mater. 9, 321–346 (2024).

    Article

    Google Scholar

  • Ansari, V., Donohue, J. M., Brecht, B. & Silberhorn, C. Tailoring nonlinear processes for quantum optics with pulsed temporal-mode encodings. Optica 5, 534–550 (2018).

    Article
    CAS

    Google Scholar

  • Caspani, L. et al. Integrated sources of photon quantum states based on nonlinear optics. Light Sci. Appl. 6, e17100 (2017).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Koenderink, A. F., Alù, A. & Polman, A. Nanophotonics: shrinking light-based technology. Science 348, 516–521 (2015).

    Article
    CAS
    PubMed

    Google Scholar

  • Timurdogan, E., Poulton, C. V., Byrd, M. J. & Watts, M. R. Electric field-induced second-order nonlinear optical effects in silicon waveguides. Nat. Photonics 11, 200–206 (2017).

    Article
    CAS

    Google Scholar

  • Heydari, D. et al. Degenerate optical parametric amplification in CMOS silicon. Optica 10, 430–437 (2023).

    Article
    CAS

    Google Scholar

  • Nitiss, E., Hu, J., Stroganov, A. & Brès, C.-S. Optically reconfigurable quasi-phase-matching in silicon nitride microresonators. Nat. Photonics 16, 134–141 (2022).

    Article
    CAS

    Google Scholar

  • Lu, X., Moille, G., Rao, A., Westly, D. A. & Srinivasan, K. Efficient photoinduced second-harmonic generation in silicon nitride photonics. Nat. Photonics 15, 131–136 (2020).

    Article

    Google Scholar

  • Billat, A. et al. Large second harmonic generation enhancement in Si3N4 waveguides by all-optically induced quasi-phase-matching. Nat. Commun. 8, 1016 (2017).

    Article
    PubMed
    PubMed Central

    Google Scholar

  • Hickstein, D. D. et al. Self-organized nonlinear gratings for ultrafast nanophotonics. Nat. Photonics 13, 494–499 (2019).

    Article
    CAS

    Google Scholar

  • Li, B. et al. Down-converted photon pairs in a high-Q silicon nitride microresonator. Nature 639, 922–927 (2025).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Serino, L. et al. Realization of a multi-output quantum pulse gate for decoding high-dimensional temporal modes of single-photon states. PRX Quantum 4, 020306 (2023).

    Article

    Google Scholar

  • Lu, H.-H., Liscidini, M., Gaeta, A. L., Weiner, A. M. & Lukens, J. M. Frequency-bin photonic quantum information. Optica 10, 1655–1671 (2023).

    Article
    CAS

    Google Scholar

  • Oliver, R. et al. N-way parametric frequency beamsplitter for quantum photonics. Phys. Rev. Res. 7, 023108 (2025).

    Article
    CAS

    Google Scholar

  • Willner, A. E., Khaleghi, S., Chitgarha, M. R. & Yilmaz, O. F. All-optical signal processing. J. Light. Technol. 32, 660–680 (2013).

    Article

    Google Scholar

  • McMahon, P. L. The physics of optical computing. Nat. Rev. Phys. 5, 717–734 (2023).

    Article

    Google Scholar

  • Saxena, M., Eluru, G. & Gorthi, S. S. Structured illumination microscopy. Adv. Opt. Photonics 7, 241–275 (2015).

    Article

    Google Scholar

  • Heist, S. et al. 5D hyperspectral imaging: fast and accurate measurement of surface shape and spectral characteristics using structured light. Opt. Express 26, 23366–23379 (2018).

    Article
    PubMed

    Google Scholar

  • Wang, Z. et al. Metasurface-empowered five-dimensional imaging with structured light. ACS Photonics 11, 3898–3906 (2024).

    Article
    CAS

    Google Scholar

  • Hum, D. S. & Fejer, M. M. Quasi-phasematching. C. R. Phys. 8, 180–198 (2006).

    Article

    Google Scholar

  • Hu, X., Xu, P. & Zhu, S. Engineered quasi-phase-matching for laser techniques. Photonics Res. 1, 171–185 (2013).

    Article
    CAS

    Google Scholar

  • Chen, B.-Q., Zhang, C., Hu, C.-Y., Liu, R.-J. & Li, Z.-Y. High-efficiency broadband high-harmonic generation from a single quasi-phase-matching nonlinear crystal. Phys. Rev. Lett. 115, 083902 (2015).

    Article
    PubMed

    Google Scholar

  • Zhu, S.-n, Zhu, Y.-y & Ming, N.-b Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice. Science 278, 843–846 (1997).

    Article
    CAS

    Google Scholar

  • Imeshev, G. et al. Engineerable femtosecond pulse shaping by second-harmonic generation with Fourier synthetic quasi-phase-matching gratings. Opt. Lett. 23, 864–866 (1998).

    Article
    CAS
    PubMed

    Google Scholar

  • Ellenbogen, T., Voloch-Bloch, N., Ganany-Padowicz, A. & Arie, A. Nonlinear generation and manipulation of Airy beams. Nat. Photonics 3, 395–398 (2009).

    Article
    CAS

    Google Scholar

  • Dolev, I., Ellenbogen, T. & Arie, A. Switching the acceleration direction of Airy beams by a nonlinear optical process. Opt. Lett. 35, 1581–1583 (2010).

    Article
    PubMed

    Google Scholar

  • Fang, B., Li, H., Zhu, S. & Li, T. Second-harmonic generation and manipulation in lithium niobate slab waveguides by grating metasurfaces. Photonics Res. 8, 1296–1300 (2020).

    Article

    Google Scholar

  • Yoo, S. J. B. et al. Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding. Appl. Phys. Lett. 68, 2609–2611 (1996).

    Article
    CAS

    Google Scholar

  • Boes, A. et al. Efficient second harmonic generation in lithium niobate on insulator waveguides and its pitfalls. J. Phys. Photonics 3, 012008 (2021).

    Article
    CAS

    Google Scholar

  • Chen, P.-K. et al. Adapted poling to break the nonlinear efficiency limit in nanophotonic lithium niobate waveguides. Nat. Nanotechnol. 19, 44–50 (2023).

    Article
    PubMed

    Google Scholar

  • Maker, P. D. & Terhune, R. W. Study of optical effects due to an induced polarization third order in the electric field strength. Phys. Rev. 137, A801 (1965).

    Article

    Google Scholar

  • Oudar, J. L. & Le Person, H. Second-order polarizabilities of some aromatic molecules. Opt. Commun. 15, 258–262 (1975).

    Article
    CAS

    Google Scholar

  • Lüpke, G. Characterization of semiconductor interfaces by second-harmonic generation. Surf. Sci. Rep. 35, 75–161 (1999).

    Article

    Google Scholar

  • Zhao, X. et al. Nontrivial phase matching in helielectric polarization helices: universal phase matching theory, validation, and electric switching. Proc. Natl Acad. Sci. 119, e2205636119 (2022).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Sultanov, V. et al. Tunable entangled photon-pair generation in a liquid crystal. Nature 631, 294–299 (2024).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Onodera, T. et al. Scaling on-chip photonic neural processors using arbitrarily programmable wave propagation. Preprint at https://arxiv.org/abs/2402.17750 (2024).

  • Wu, T., Menarini, M., Gao, Z. & Feng, L. Lithography-free reconfigurable integrated photonic processor. Nat. Photonics 17, 710–716 (2023).

    Article
    CAS

    Google Scholar

  • Margules, P., Moses, J., Suchowski, H. & Porat, G. Ultrafast adiabatic frequency conversion. J. Phys. Photonics 3, 022011 (2021).

    Article
    CAS

    Google Scholar

  • Shiloh, R. & Arie, A. Spectral and temporal holograms with nonlinear optics. Opt. Lett. 37, 3591–3593 (2012).

    Article
    PubMed

    Google Scholar

  • Leshem, A., Shiloh, R. & Arie, A. Experimental realization of spectral shaping using nonlinear optical holograms. Opt. Lett. 39, 5370–5373 (2014).

    Article
    PubMed

    Google Scholar

  • Buono, W. T. & Forbes, A. Nonlinear optics with structured light. Opto-Electron. Adv. 5, 210174 (2022).

    Article
    CAS

    Google Scholar

  • Efremidis, N. K., Chen, Z., Segev, M. & Christodoulides, D. N. Airy beams and accelerating waves: an overview of recent advances. Optica 6, 686–701 (2019).

    Article
    CAS

    Google Scholar

  • Ji, X. et al. Ultra-low-loss silicon nitride photonics based on deposited films compatible with foundries. Laser Photonics Rev. 17, 2200544 (2023).

    Article
    CAS

    Google Scholar

  • Ji, X., Roberts, S., Corato-Zanarella, M. & Lipson, M. Methods to achieve ultra-high quality factor silicon nitride resonators. APL Photonics 6, 071101 (2021).

    Article
    CAS

    Google Scholar

  • Liu, J. et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nat. Commun. 12, 2236 (2021).

    Article
    CAS
    PubMed
    PubMed Central

    Google Scholar

  • Yanagimoto, R. et al. Data repository for “Programmable on-chip nonlinear photonics”. Zenodo https://doi.org/10.5281/zenodo.17074707 (2025).

  • Bolla, L. EMpy – Electromagnetic Python. GitHub https://github.com/lbolla/EMpy (2017).


  • Disclaimer: This news article has been republished exactly as it appeared on its original source, without any modification.
    We do not take any responsibility for its content, which remains solely the responsibility of the original publisher.


    Author: Ryotatsu Yanagimoto

    Published on: 2025-10-08 04:00:00

    Source: www.nature.com


    Disclaimer: This news article has been republished exactly as it appeared on its original source, without any modification.
    We do not take any responsibility for its content, which remains solely the responsibility of the original publisher.


    Author: uaetodaynews
    Published on: 2025-10-08 22:56:00
    Source: uaetodaynews.com

    chicago76.com

    Find the latest breaking news and in-depth coverage on world affairs, business, culture, and more

    Related Articles

    Back to top button